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Introduction to ALNs

Human abilities to learn and to quickly identify patterns are exactly the abilities ALNs are designed to 
automate, and they do it very well. Factory automation, speech recognition, data analysis, and even the 
creative processes of abstract thought require these abilities.    Any tasks like these that require an ability 
to learn to respond to real or abstract patterns at very high speed are potential areas of application of 
ALN-based systems.

Our goal in what follows will be to try to familiarize the reader with ALN technology and outline what 
applications are good candidates for using ALN technology.
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ALN Demonstration Programs

There are three demonstration programs included with atree 2.7.    The demos all show how ALNs can 
distinguish patterns under seemingly insurmountable noise conditions based on only a fraction of the 
possible cases.    They illustrate the ability of ALNs to generalize from training samples to other inputs 
close to them.    This is not like the human ability to generalize from playing the flute to playing the tuba, 
which is not based on a measure of proximity, or at least not in a low-level sense.    ALNs, like other 
neural networks, have limitations that require combination of their talents with higher-level paradigms, for 
example expert systems, predicate logic, or other "symbolic" AI tools.
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ALN Script Language: lf

The "lf" language interpreter allows a non- programmer to experiment with ALNs. The user specifies a 
training set, and a test set, and selects the encoding and quantization levels for a particular experiment. 
The interpreter checks the statements for errors then executes the desired experiment, finally outputting a
table comparing the desired function with the function actually learned. Various post-processors can use 
the information to produce histograms of errors or plots of the functions.

LFEDIT.EXE is an interactive file editor that lets you edit lf programs and then run them, but can only edit 
files of about 48K.    If your lf file is larger than this, LFEDIT.EXE will offer you the choice of executing the 
program anyway, without displaying it in the edit window.

*IMPORTANT*
There are 4 example files, example1.lf, example2.lf, example3.lf, and example4.lf.    Please work through 
them carefully, as they illustrate all the different language features available, as well as some techniques 
for training ALNs.

Using lf: multiply.lf
lf Language Syntax
lf Example: abs_sine.lf
lf Examples: noisyand.lf & noisyxor.lf



ALN Software Development Library

Writing atree applications is not difficult.    In the archive atre26.exe you can find source code for 
examples of atree applications, both simple and complex, both in C and C++.    All make use of the atree 
library, which deals with creating, training, and evaluating ALNs.    The BV library permits easy creation 
and use of the bit vectors that are used for input to the ALNs.    The Windows support library contains 
routines that facilitate the running of atree applications under Windows 3.x.
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ALN Technical Notes

The software in the archive atre26.exe contains an implementation of an unconventional kind of 
learning algorithm for adaptive logic networks[Arms], which can be used in place of the backpropagation 
algorithm for multilayer feedforward artificial neural networks [Hech], [Rume].
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The Advantage of Extremely High Speed

OCR is nothing new, nor is it new that character shapes can be learned by a computer system.    One 
important new aspect of ALN technology is the potential to recognize things at extremely high speeds.    
ALNs can be made orders of magnitude faster than any technology we know of today with competitive 
flexibility and noise immunity.

ALNs, after training, become hardware circuits that are just collections of transistors, the basic switching 
component of all digital computers, connected together in the form of a tree.    In such a tree, the 
computation time is proportional to the number of layers of the tree. Complex tasks can be accomplished 
in nanoseconds. (For the uninitiated: a nanosecond is a thousandth of a thousandth of a thousandth of a 
second.)    Another way of putting this is in terms of the speed of light. Most people know how fast light is: 
it can circle the earth seven times in one second.    Hardware resulting from ALN training, can process an 
input pattern and compute its identity in the time it takes for light just to cross a small room.

In contrast to ALNs, other computer systems, including "massively parallel" artificial neural nets of other 
types, can barely get started on the same recognition task in that time.    They might be able to do one 
multiplication, or several simultaneously in different components, before the ALNs are finished, but they 
will still have many more to do before recognition of the pattern is complete.

ALNs are the system of choice in all areas requiring very high speed.

One example: researchers at an accelerator facility need a trigger which will operate in less than half a 
microsecond when particles of a certain type are detected.    They are looking seriously at ALN technology
because nothing else appears to have the potential for such speed.    It appears now that ALNs have the 
potential to exceed the speed and accuracy requirements of that problem.

For those who don't need to identify the type of a particle traveling near the speed of light, there may be 
other very good reasons for requiring extreme speed.    One is that your system must do huge numbers of
pattern recognition operations.    For example it might have to process scanned images of parts being 
assembled in a factory, where each image is made up of a million pixels.    Another possibility is that you 
want to analyze a large collection of images for a certain pattern.    Looking for a feature in an image in all 
possible positions and many sizes and orientations would be very time-consuming without ALNs.    A 
single ALN tree has the potential to carry out hundreds of millions of recognition operations per second.

Just as speed is a requirement for computer vision, it is also needed for sound signals, like voice, and for 
sensor signals in general.

In designing ALNs, we have consciously chosen the path for the highest possible speed. It can provably 
be made faster than any other digital system on a given problem.    This advantage of ALN hardware will 
never be overtaken as long as computing is done with digital circuitry (so we are probably safe for the 
next millennium anyway).    As digital logic becomes faster, ALNs will get faster at the same rate.

As problems get larger, the computation time of an ALN system does not grow proportionally to the size of
the task, as it does with other artificial neural systems.    With ALNs, the computation time grows much 
more slowly: logarithmically in the size of the task. What other systems do you know of that can handle 
problems twice as large in less than one extra nanosecond?

Another important new aspect of ALN technology that we shall discuss is the inherent ability of ALNs to 
overcome distortions and noise in input patterns.    Other systems can do this too, but ALNs do it without a
significant penalty in computation time.

What Kinds of Tasks Does an ALN Do Well?
Why Does an ALN Reduce the Effects of Distortion?
How Does an ALN Overcome Noise?
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What Kinds of Tasks Does an ALN Do Well?

Extracting significant information from noisy, incomplete, even contradictory data, and thus making 
appropriate decisions is what ALN processing is all about.    Consider how important this ability is to you.   
When there are obstructions, or visibility is poor, it is not easy for you to recognize faces, house numbers, 
or highway signs, but your well-being and even your survival may depend on it.    During your waking 
hours, all of your senses are continuously generating large amounts of noisy data, while your brain and 
nervous system are at work identifying the origins of the stimuli and dealing with the significant 
observations.      ALNs allow similar tasks to be done automatically.    It doesn't matter whether the data is 
from an image scanner, a microphone or a relational database.    Successful applications of ALNs have 
used data from questionnaires, infrared spectra, pressure sensors, and elaborate detectors at particle 
accelerator facilities.

Why Does an ALN Reduce the Effects of Distortion?
How Does an ALN Overcome Noise?
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Why Does an ALN Reduce the Effects of Distortion?

ALN training results in a tree of AND and OR operators (logic gates).    This may later be turned into a tree
of transistors in hardware, but let's just examine the tree of ANDs and ORs. The tree gets its inputs from a
pattern of zeros and ones representing inputs from the problem domain.    Some of these signals are 
negated before being passed to the tree, since negations are required to make it possible to produce any 
desired relationship between the network inputs and the network outputs.    A gate in the tree takes 
several zero- or one-valued signals as inputs.    An OR gate produces a one output if ANY of its inputs is a
one, and an AND gate produces a one if ALL its inputs are ones.

Obviously, the OR gates can allow the network to deal with alternative geometric forms of a character.    
The ANDs can combine parts of an image as required to form a whole image.    (Interchanging the roles of
zero and one also interchanges the roles of AND and OR -- a principle called duality.)    So it is easy to 
understand how ALNs can cope with considerable distortions in what is considered to be an "A", say.

Some problems will not have this kind of variability in the patterns to be recognized, for example, suppose
one wants to recognize whether there are exactly 200 dark pixels in the input grid of 1024 or not.    That is 
not a problem for ALNs, because there are so many alternative ways for making at least 200 pixels dark.   
(Though, surprisingly, ALNs can compute whether there are "roughly 200 dark pixels" quite easily.)

It is important to recognize when ALNs are not appropriate for a certain task.    Nothing could be more 
absurd than imagining they, or any other artificial neural system, will eliminate the need for programming 
and careful analysis of problems.

How Does an ALN Overcome Noise?
Safety of Artificial Neural Systems



How Does an ALN Overcome Noise?

Imagine that a tree of ANDs and ORs responds correctly to one input pattern, say a handwritten "A".    
Imagine now perturbing that "A" by changing some light pixels to dark and vice-versa.    Assuming that the
pattern still looks like an "A", why should the tree tend to still produce the same response as before?    To 
understand this we have to look at a gate, say a two-input AND gate, where the changed shape of the 
input character has led to an input to the AND gate being changed, say from a zero to a one.    What is the
likelihood that the output of the AND gate will also be changed?    The answer is that if the other 
unperturbed input to the AND is a one, the output of the AND will change; but if the other input is a zero, 
the output won't change, but will still be zero. Hence the probability that the AND gate output changes is 
0.5 overall.    In a ten layer tree, the probability that the output changes when one input to the tree 
changes is 1/1024.    This is very small.    In the case of the OCR demo, each pixel of the 32x32 input 
image can be sent to several gates of the tree (sometimes negated first).    The theory has been worked 
out for that case too, and it still shows    insensitivity to perturbations of the inputs.

Trees of AND and OR gates tend to be very insensitive to perturbations of the input images. Insensitivity 
is a property that is applicable to ALNs, but not to non-logical artificial neural systems in general.

Training ALNs
Why Does an ALN Reduce the Effects of Distortion?
Safety of Artificial Neural Systems



Training ALNs

Programming is tough to do.    Ask any programmer.    Even simple programs can cause problems when 
certain cases are overlooked.    For many problems, like handwritten character recognition, writing a 
program would be very difficult.    For example, you could start by analyzing which pixels in the character 
images are important for identifying the characters, then based on whether one such pixel is dark or light, 
you could branch to one of two possible continuations of the decision process where further branches are 
made, until finally a decision as to the character identity is made.    Because of noise, any particular pixel 
doesn't contain much information, so this decision-tree programming method approach would be long and
tedious.

It would require you to have some idea of how to define the letters concerned.    How would you define the
total variety of shapes of handwritten letters "A", "L", and "N"?    Providing such descriptions would be as 
hard as writing the program!

Hence, it makes sense to define the handwritten letter "A" by giving a large "training set" of samples, and 
to have a system which learns to respond to an input pattern on the basis of its similarity to one of the 
samples.    During training of an ideal system, contradictions in the identities of characters given in the 
training data would be sorted out, and a decision procedure would be developed that takes into account 
how close an input is to several close samples presented in training, and their identities.    Alas, then we 
would have the problem that the more precise we make the definition by giving more samples, the longer 
it would take to compare an input to all the samples.    More fundamentally, we still have to define "close", 
and make a procedure to resolve different identities that might be found among the close training 
samples.

When ALNs are trained, the information in the training set of samples is "compressed" into a digital logic 
circuit, so the problem of the time of comparison to training samples does not exist.    The decision time is 
always extremely fast.    On the other hand, there is no simple rule describing how ALNs operate, though 
there is a tendency to do something like the ideal procedure described above.    In fact, the raison-d'être 
of the OCR demo is to convince you that the method can work, even if it is not always easy or possible to 
explain exactly why. If you are working in a problem area where you have lots of empirical data but no 
simple models for making decisions, ALNs may be the method of choice.

Data Analysis Applications of ALNs
The Advantage of Extremely High Speed
Safety of Artificial Neural Systems



Data Analysis Applications of ALNs

We have successfully used ALNs to analyze environmental data, questionnaires, and data from attempts 
to design rules for stimulators that help spinal-cord damaged patients to walk.    Others are also using the 
data analysis capabilities of neural systems to try to predict fluctuations of prices on the stock market.

We are currently working on products that will allow you to take data from a relational database and apply
ALNs to learn to predict the values in certain columns of a table from some other columns.    This could be
of help in trying to analyze relationships among the columns of your data, for example.

ALNs operate by producing decisions.    However, it is often desirable to have an explanation of how the 
network arrives at the decisions.    If the network has developed a simple decision procedure, then that 
may give rise to new insights into the solution of your problem.    If the networks are fairly small, this job of 
finding a simple explanation for the decisions can be easily accomplished by printing out the logic tree 
resulting from training and studying it.

In large networks, unfortunately, the question of how the network makes its decisions is often too difficult 
to answer. This is because of a fundamental theorem of computing science that says that it is 
computationally intractable (more precisely, NP-complete) just to decide if a two-layer network with ORs 
feeding into one AND will ever produce a one output. If one can't determine with a reasonable 
expenditure of computer time whether a network will ever produce a one output, then how can one hope 
to deal with more complex questions?    This leads us to the important question of safety.

Safety of Artificial Neural Systems



Safety of Artificial Neural Systems

In some cases, the cost of a wrong decision is too high.    It is usually impossible to test an artificial neural 
network for all possible inputs and be sure that catastrophic decisions will not occur.    There are too many
possible inputs to do that.    We have to have an overview of what the system does for all its possible 
inputs.    A simple explanation of what the network does would succeed, but as we have seen above, we 
usually can't get one from the trained network.    Hence, if one can't be sure that the network can never 
produce an output that leads to disaster, then artificial neural network technology will remain rather limited
in its applicability. This limitation would exclude many important engineering problems, like controlling 
aircraft.

If an artificial neural network could erroneously apply full power just as an aircraft is moving slowly 
towards the terminal building, do you think the engineers would use it? The potential for disaster is a 
serious problem that must be addressed before artificial neural systems, including the special case of 
ALNs, can be deployed in many areas.

We don't believe the answer lies in understanding or explaining what a trained network does, in general. 
We do believe in creating ALN networks by a design methodology that leads to networks with well-
understood properties. No one should be surprised about this, since it is exactly what is done in the case 
of software.    No feasible amount of testing can assure in general that either software or artificial neural 
systems are safe.    Only a high quality design process can assure that.

A safe design methodology for ALNs will be available in commercial versions of our software now being 
developed.    It will be based on careful control of where functions are increasing and decreasing, and will 
allow the designer to input a priori knowledge into the design process.    By knowing where the networks 
are increasing and decreasing, one can be assured of the safety of outputs between inputs which have 
been tested.    In this way one gains certainty of the safety of the system for all possible inputs.

Fortunately, we know how to make large ALN systems safe.    We feel other large neural systems cannot 
be made provably safe, in general. This criticism applies in particular to multilayer perceptrons, the most 
popular type today, of which ALNs are a special case.

We would be pleased to discuss solutions to problems involving both high speed and safety with anyone 
having those requirements.    We are sure we can convince you that ALNs can be made as safe as any 
computer system you are currently using.

An Invitation to Developers



Eliminating Redundant Inputs

Here is one way to use ALNs to analyze data :

ALNs allow one to try leaving out certain variables in the input data to see if reasonable decisions can still
be obtained by training. In one problem, a set of 700 points in a spectrum could be reduced to 25 which 
gave almost the same quality of decision at a potentially great savings in time.    After studying the data in 
this way, you can apply other techniques that may be contractually specified to solve your problem.    The 
reduction in the number of input variables may even be required to make the other technique work.

The Future of Training versus Programming
The Advantage of Extremely High Speed
Data Analysis Applications of ALNs



The Future of Training versus Programming

In the future, there will be a lot of systems that are developed using training combined with programming.  
Training will be the principal means for developing robotic abilities to process information from sensors. 
Because of their high speed and immunity to noise and distortion, ALNs will be the tool of choice for those
applications.

We expect ALNs to be used in many kinds of products that include sensors.    All homeowners would like 
to train a robot to cut their grass, for example.    As the population ages, there will be a greater need for 
robots to assist the physically and mentally impaired.    Right now, this looks like fantasy, but the point is 
that there have never been pattern recognizers with the capabilities of ALNs before, so it is only now that 
these developments can begin.

An Invitation to Developers



An Invitation to Developers

In order to appreciate what ALNs can do on one of your problems, you'll just have to try them out. You 
can get into the area as easily as writing a little program in the lf language, following one of the samples 
you call up when you click on the lfEdit icon and select the "Open" command.

When you have done your feasibility studies, we will be there to support you with superior commercial 
ALN products.

We invite all developers of systems for classifying inputs, analyzing data or requiring high speed pattern 
recognition capability to join us in experimenting with ALNs.    This non-commercial version of ALN 
software, which includes all source code, is for your use in trying out your ideas.    A commercial version of
ALN software will be ready in late 1992 for inclusion in your future systems, and will focus on quality of 
training and decision making and on the critical aspect of safety.

The Advantage of Extremely High Speed
Data Analysis Applications of ALNs
The Future of Training versus Programming



The Multiplexor Problem

A multiplexor is a digital logic circuit which behaves as follows: there are k input leads called control leads,
and 2^k (2 to the power k) leads called the "other" input leads.    If the input signals on the k control leads 
represent the number j in binary arithmetic, then the output of the circuit is defined to be equal to the 
value of the input signal on the jth one of the other leads (in some fixed order).    A multiplexor is thus a 
boolean function of n = k + 2^k variables and is often referred to as an  n-multiplexor.

The trick to the whole problem is that an ALN doesn't know which inputs are the control leads, and which 
are the input leads... an unlabeled truth table for a multiplexor of 3 control leads and 8 input leads looks 
like a random jumble of ones and zeros.    The job of the ALN is to correctly deduce which of the inputs 
are the control leads, and propagate the correct input lead value as the tree output.

This problem was solved to produce a circuit testing correctly on 99.4% of 1000 test vectors in 19 epochs.
The time may vary considerably depending on the random numbers used.    It is possible to learn 
multiplexors with twenty inputs (four control leads) with a straightforward but improved adaptation 
procedure, and multiplexors with up to 521 leads (nine of them control leads) using much more elaborate 
procedures which change the tree structure during learning [Arms5].

The code for the problem can be found in mult.c



The Mosquito Problem

Suppose we are conducting medical research on malaria, and we don't know yet that malaria is caused 
by the bite of an anopheles mosquito, unless the person is taking quinine (in Gin and Tonics, say) or has 
sickle-cell anemia. We are inquiring into eighty boolean-valued factors of which "bitten by anopheles 
mosquito", "drinks Gin and Tonics", and "has sickle-cell anemia" are just three.    For each of 500 persons 
in the sample, we also determine whether or not the person has malaria, represented by another boolean 
value, and we train a network on that data.    We then test the learned function to see if it can predict, for a
separately-chosen test set, whether person whose data were not used in training has malaria.

Suppose on the test set, the result is 100% correct. (Training and test can be done in about five seconds.)
Then it would be reasonable to analyze the function produced by the tree, and note all the variables 
among the eighty that are not involved in producing the result.    A complete data analysis system would 
have means of eliminating subtrees "cut off" by LEFT or RIGHT functions (such as atree_compress()), to 
produce a simple function which would help the researcher understand some factors important for the 
presence of the disease.    If there were extraneous variables still left in the function in one trial, perhaps 
they would not show up in a second trial, so that one could see what variables are consistently important 
in drawing conclusions about malaria.

We apologize for the simplistic example, however we feel the technique of data analysis using these trees
may be successful in cases where there are complex interactions among features which tend to mask the
true etiology of the disease.

The code for the problem can be found in mosquito.c.



The OCR Problem

This optical character recognition (OCR) demonstration shows the power of trained adaptive logic 
networks (ALNs) to identify images of printed or handwritten characters. Each input character image, 
before it is presented to the ALN recognition system, is translated, rotated and corrupted by "salt-and-
pepper noise" (so-called, because some of the picture elements, or pixels, change from light to dark, or 
vice-versa, as though a grain of pepper or salt had fallen on them). The level of noise in this 
demonstration is much higher than could be tolerated by most current OCR systems, showing how 
immune ALNs are to undesirable distortions of the inputs.

When you test yourself against the trained networks in "reverse" mode, where each character is initially 
completely obscured by noise, you can compare ALNs to your own human visual abilities.    As the noise 
disappears, the ALNs may decide for a particular character, e.g. "A", "L", or "N", or whatever images you 
have drawn in yourself (children may prefer cartoon characters!).    A decision for a certain character is 
indicated by the light bulb corresponding to that character flashing once.    The networks may be wrong, 
as indicated by flashes that stop before the noise is gone.    We can define the moment of successful 
recognition by the ALNs as the earliest moment when the correct light flashes and continues to flash as 
the noise diminishes to zero.

How do you think your decisions compare to the adaptive logic network's decisions?



Using lf: multiply.lf

The language is best learned by examining an example. The file multiply.lf contains a simple experiment 
where we are trying to teach the system the multiplication table. The program is divided into a "tree" 
section which describes the tree and the length of training, and a "function" section which describes the 
data to be learned. Comments are started with a `#' mark and continue to the end of the line.

# A comment.
tree
                size = 4000
                min correct    = 144
                max epochs    = 20
                vote = 5
                save tree to "multiply.tre"

The tree and function sections can be in any order, in this particular example the tree is described first.    
Apart from comments, tabs and newlines are not significant; the arrangement chosen above is only for 
readability. The first line after tree tells the system how large the atree is going to be. In this case we are 
choosing a tree with 4000 leaves (3999 nodes). We are going to train it until it gets 144 correct from the 
training set, or for 20 complete presentations of the training set, whichever comes first.    In some cases, 
where trees are learning the training set well, but are not generalizing effectively on test data, you can 
take votes on the result, which improves generalization.    Voting works by having an odd number of trees 
vote on the outcome of a particular bit in the output.    Having no vote statement is equivalent to having a 
vote of 1.

Trees may also be read from a file with the "load tree from" statement.    If this statement is specified, the 
tree size will be ignored and lf will output a warning message.    Trees can be written to files using either 
the "save tree to" or "save folded tree to" statements.

The statements in the tree section may be in any order.

function
                domain dimension = 2
                coding = 32:12 32:12 32:7
                quantization = 12 12 144
                save coding to "multiply.cod"

training set size = 144
training set =

1              1              1
1              2              2
1              3              3
1              4              4
....

test set size = 144
test set =

1              1              1
1              2              2
1              3              3
1              4              4
....

The training set must start with a dimension statement which gives the number    of columns in the 
function table.    The domain dimension refers to the number    of input columns.    Lf supports training of 
multiple functions using the same inputs.    This is done using the codomain dimension statement.    If the 
codomain dimension statement is not specified, the codomain dimension is assumed to be 1 (as in the 
above example).    The total number of columns in the training and test sets must equal the sum of the 
domain and codomain dimensions (this doesn't mean a restriction on the format, just on what the number 
of elements in the table must be).    In the above example, we are defining a problem with three columns: 



two input and one output.

The other statements may come in any order; note however that the definition of the training set size must
be defined before the training set. This also applies to the test set definition.

The coding statement defines is a series of <width>:<step> definitions, one for each column. The <width>
is the number of bits in the bit vector for that column, the <step> is the step size of the walk in Hamming 
space that defines the encoding of this column. Because a tree only produces a single bit in response to 
an input vector, the sum of the <width> values for the codomain columns (which come after the domain 
columns) actually defines how many trees will be learning output bits of this function.    If each each bit of 
the output is determined by a vote of v trees, then the number of trees required is multiplied by v.

The quantization statement defines for each column the total number of coded bit vectors used to code 
values for that column.    Entries in the test and training sets are encoded into the nearest step, so this 
statement defines the accuracy possible.

Codings may also be read from a file using the "loading code from" statement. If this is specified, coding 
and quantization statements are ignored, and lf will warn the user.    Note that codings must be specified 
by a "read coding from" statement, or combinations of coding and quantization statements.

Codings can be saved to a file with the "save coding to" statement, which may be placed anywhere in the 
function section.

For a more complete discussion on random walks and encoding input and output dimensions, see 
atree_rand_walk().

The training set statement defines the actual function to be learned by the system. An entry in a table can 
be either a real number or an integer.    If the width of the a column (as specified by the coding) is 1, then 
that column is boolean.    For boolean columns, zero values are FALSE, and any non-zero value is 
considered TRUE.    You can leave out a training set entirely by specifying "training set size = 0", and 
leaving out the "training set =" statement.    This is useful for loading and executing previously stored 
functions without further training.

The test set statement defines the test that is run on the trees at the end of training to see how well the 
learned function performs. Like the training set, reals or integers are acceptable.    You can leave out a 
test set entirely by specifying "test set size = 0", and leaving out the "test set =" statement.

After lf has executed, it produces a table of output showing how each element in the test set was 
quantized, and the value the trained tree returned. Consider the following results that multiply.lf produced. 
Note that the quantization level is one less than the number represented.    This is because the range of 
numbers is from 1 to 144, and 0 corresponds to the first quantization level.

1
.....
3.000000 2        11.000000 10        33.000000 32        33.000000 32
3.000000 2        12.000000 11        36.000000 35        36.000000 35
4.000000 3        1.000000 0                4.000000 3                4.000000 3
4.000000 3        2.000000 1                8.000000 7                8.000000 7
4.000000 3        3.000000 2                12.000000 11        12.000000 11
.....

Each column consists of two numbers, the entry specified by the user, and an integer describing the 
quantization level it was coded into.

The fourth column is the result produced by the trained tree.    It shows the quantization level produced 
(the second figure) and how this may be interpreted in the space of the codomain (the first figure).

ERROR HISTOGRAM



0 errors        144
1 errors        0
2 errors        0
3 errors        0
4 errors        0
5 errors        0
6 errors        0
7 errors        0
8 errors        0
9+ errors        0

Following the result table is the error histogram, which counts, for each of the codomains, the number of 
times the result quantization level differed from the actual quantization level by n.

This problem takes about an hour to run on a 386/33.    Please compare to the June/90 Article of AI Expert
where it was estimated that it would take two months on a Cyber 205 for a backpropagation net to learn 
the twelve times multiplication table!



lf Language Syntax

The syntax has been defined using YACC. Tokens have been written in quotes to distinguish them. Note 
that the following tokens are synonyms :-

dimension, dimensions
max, maximum
min, minimum

The syntax is defined as follows :

program :    function_spec tree_spec
| tree_spec function_spec

function_spec : "function" dim codim function_statements

dim :    "domain dimension =" integer

codim:    /* empty */
| "codomain dimension =" integer

function_statements :    function_statement
| function_statements function_statement

function_statement :    quantization
| coding
| coding_io
| train_table_size
| train_table
| test_table_size
| test_table
| largest
| smallest

quantization :    "quantization =" quant_list

quant_list :    integer
| quant_list    integer

coding :    "coding =" code_list 

code_list :    integer ":" integer
| code_list integer ":" integer

coding_io:    "save coding to" string
| "load coding from" string

train_table_size :    "training set size =" integer

train_table :    "training set =" table

test_table_size :    "test set size =" integer

test_table    :    "test set =" table



table :    num
| table num

num :    real
| integer

largest :    "largest =" largest_list

largest_list :    num
| largest_list num

smallest :    "smallest =" smallest_list

smallest_list :    num
| smallest_list num

tree_spec :    "tree" tree_statements

tree_statements :    tree_statement
| tree_statements tree_statement

tree_statement :    tree_size
| tree_io
| min_correct
| max_correct
| max_epochs
| vote_no

tree_size :    "size =" integer

tree_io :    "save tree to" string
| "save folded tree to" string
| "load tree from" string

max_correct :    "min correct =" integer

max_epochs :    "max epochs =" integer

vote_no :    "vote =" integer



lf Example: abs_sine.lf

This is a straightforward problem involving taking the absolute value of sine around the circumference of 
the unit circle.    Because of the absolute value, backpropagation nets may have a great deal of difficulty 
fitting the curve, something that ALNs have little difficulty with.    The accuracy of fitting in a backprop net 
can be, of course, arbitrarily high, in theory, however, high values of the weights are required.    The need 
to allow high magnitude weights runs counter to the need for good generalization.    It can be dangerous 
to allow high weights, since spikes in network output of the backprop net can occur unexpectedly if they 
are missed during testing.

This problem takes about half an hour to run on a 386/33, achieving 2 decimal places of accuracy.



lf Examples: noisyand.lf & noisyxor.lf

ALNs can often be given inconsistent or noisy data to train on, in which case they will try to learn the case
that is presented most often.

noisyand.lf

This is an lf example that tries to learn the AND function of two boolean inputs.    The training is done with 
contradictory data.      For each pair of values of the input, for example A = 1, B = 0, there are three correct
training samples and two incorrect ones in the set.    The optimal decision here is to learn the AND, but 
that may not always happen.

noisyxor.lf

This is an lf example that tries to learn the XOR function of two boolean inputs.    The training is done with 
contradictory data.      For each pair of values of the input, for example A = 1, B = 0, there are four correct 
training samples and one incorrect sample in the set.    The optimal decision here is to learn the XOR, but 
that may not always happen. 



What is an ALN?

An ALN (adaptive logic network) is a kind of artificial neural network.    It is a special case of the familiar 
multilayer perceptron (MLP) feedforward network and has been designed to perform basic pattern 
classification computations at extremely high speed -- literally at the upper limit of speed for any digital 
system.



Abilities and Properties of ALNs in atree 2.7

The ability of a logic network to learn or adapt to produce an arbitrary boolean function specified by some 
empirical "training" data is certainly important for the success of the method, but there is another property 
of logic networks which is also essential.    It is the ability to generalize their responses to new inputs, 
presented after training is completed.    The successful generalization properties of these logic networks 
are based on the observation, backed up by a theory [Boch], that trees of two-input logic gates of types 
AND, OR, LEFT, and RIGHT are very insensitive to changes of their inputs.

One property of these networks in comparison to others is an absolute, and will become apparent to 
computer scientists just by examining the basic architecture of the networks.    Namely, when special 
hardware is available, this technique, because it is based on combinational logic circuits of limited depth 
(e. g. 10 to 20 propagation delays), can offer far greater execution speeds than other techniques which 
depend on floating point multiplications, additions, and computation of sigmoidal functions.

A description of the class of learning algorithms and their hardware realizations can be found in [Arms, 
Arms2], but we will briefly introduce the concepts here. An atree (Adaptive TREE) is a binary tree with 
nodes of two types: (1) adaptive elements, and (2) leaves.    Each element can operate as an AND, OR, 
LEFT, or RIGHT gate, depending on its state.    The state is determined by two counters which change 
only during training.    The leaf nodes of the tree serve only to collect the inputs to the subtree of elements.
Each one takes its input bit from a boolean input vector or from the vector consisting of the complemented
bits of the boolean input vector.    The tree produces a single bit as its output.

Despite the apparent limitation to boolean data, simple table-lookups permit representing non-boolean 
input values (integers or reals for example) as bit vectors, and these representations are concatenated 
and complemented to form the inputs at the leaves of the tree.    For computing non-boolean outputs, 
several trees are used in parallel to produce a vector of bits representing the output value.

This software contains everything needed for a programmer with knowledge of C and Windows 3.x to 
create, train, evaluate, and print out adaptive logic networks. It has been written for clarity rather than 
speed in the hope that it will aid the user in understanding the algorithms involved.    The intention was to 
try make this version faster than variants of the backpropagation algorithm for learning, and to offer much 
faster evaluation of learned functions than the standard approach given the same general-purpose 
computing hardware.    Users of the software are requested to provide some feedback on this point to the 
authors.

This software also includes a language "lf" that allows a non-programmer to conduct experiments using 
atrees, as well as a number of demonstrations.

A version of this software which is both faster and contains a more effective learning algorithm, is planned
for the near future in a commercial release.



ALN Diagram: Using Several Trees to Compute Y = f(X1, X2)



What Could One Use ALNs For?

They are currently being tried out in simulations using the atree software for various applications:

1. Optical Character Recognition (OCR) -- a demo of OCR is included in atree release 2.7; the great 
immunity of ALN trees to noise is made clear. (Thomas)

2. Discriminating between two kinds of particles produced by an accelerator, where a decision must be 
made in less than 1/2 microsecond. (Volkemer)

3. Designing control systems for prostheses to enable people with spinal cord damage to walk by means 
of functional electrical stimulation. Simplicity of fabrication, safety and lightness are important here. (Stein,
et al.)

4. Analyzing spectra of tarsands to determine the composition; data analysis was used to cut down the 
number of spectral measurements required from 700 to 25. (Parsons)

5. Classifying the amount of fat in beef based on texture measures taken of ultrasound images of beef 
cattle. (McCauley et al.)



Inputs

The following assumes the reader has read something about typical feed-forward neural nets.    In the 
case of ALNs, the input data to the learning system must be boolean.    Non-boolean data is coded into 
boolean vectors before entering the learning part.    This may involve arithmetic and table lookup 
operations.    Several boolean outputs may be used to provide outputs which are more complex than 
boolean, say continuous values.    There are no a priori limitations on the kind of functions that can be 
treated using ALNs.



Architecture of the Net

The interconnections of nodes usually take the form of a binary tree, except that there are multiple 
connections of inputs to the leaf nodes of the tree, some involving inversions.    There is no limit to the 
number of hidden layers in practice.    Ten or fifteen is typical.    A small net might have 255 nodes, a large 
one 65,535 nodes.    One doesn't have to worry about the shape of the net as much as with other 
networks.



The Elements of the Neural Network

The nodes (or adaptive logic elements) have two input leads. The input signals x1, x2 are boolean ( 0 or 
1).    A connection "weight" to be used for each input ( to use the term for the usual kind of neural net) is 
determined by a single bit of information.    The nonlinearity, or "squashing function", used in ALNs is just 
a simple threshold (comparison to a constant).    Specifically, if b1 and b2 are boolean, then the element 
computes a boolean value which is 1 if and only if

          (b1 + 1) * x1 + (b2 + 1) * x2 >= 2.

The four combinations of b1 and b2 ( 00, 11, 10, 01) generate the four boolean functions of two variables: 
AND, OR, LEFT, and RIGHT, where LEFT(x1, x2) = x1 and RIGHT(x1, x2) = x2.    For example 1 * x1 + 1 
* x2 >= 2 if and only if both x1 AND x2 are 1.

The LEFT and RIGHT functions, in effect, serve to provide some flexibility in the interconnections.    They 
disappear after training is complete.

Two counters in the node count up and down in response to 0s and 1s desired of the network when the 
input to the node is 01 or 10 respectively.    They try to determine the best function for the node even in 
the presence of noise and conflicting training data.    The counters also disappear after training is 
complete.



The Training of the Tree

A tree of such elements is randomly connected to some boolean input variables and their complements.    
Inputs enter the tree at the leaves and the output is at the root node.    The input variables are 
components of a vector representing a pattern, such as a handwritten character.    Training on a set of 
input vectors, furnished with the desired boolean outputs, consists of presenting input vectors in random 
sequence, along with the desired outputs.    It results in an assignment of functions to nodes that allows 
the tree to approximate the desired outputs specified by the training data.

To orchestrate the changes to be made during training, a solution to the credit assignment problem is 
used.    It is based on the idea that if one input to an AND (OR) is 0 (1), then it doesn't matter what the 
nodes of the subtree attached to the other input are doing.    According to this simple rule, a node is 
responsible if a change in its output would change the network output.    (This is like backprop, except that
the quantity being propagated backwards is either 0 or 1.)

The fact that all node functions are increasing causes a positive correlation between the node output and 
the network output, which indicates the direction of changes that must be made.    In addition, there is a 
small refinement which goes beyond this simple scheme. (You can look at the function starting

adapt(tree,vec,desired)

in atree.c to confirm that this is a very simple yet effective mechanism).

After training, the ALN then has built-in capacity to generalize, i.e. to give appropriate responses to other 
possible input vectors not presented during training.    This comes about not because of any additional 
hardware or software, but just because of the architecture of the tree -- trees filter out perturbations of the 
inputs.    Hence no speed is lost in order to generalize well -- the architecture does it.

The training set can contain contradictory samples, and the relative numbers of such conflicting samples 
for the same input will be taken into account in the training procedure to approximate maximum likelihood 
and Bayes decision rules.



The Learning Algorithm

For those who would like to understand the ALN learning algorithm used in the atree demo software, the 
best published introduction to ALN learning is the paper:

W. Armstrong and J. Gecsei, "Adaptation Algorithms for Binary Tree Networks", IEEE Trans. on Systems, 
Man and Cybernetics, 9, 1979, pp. 276-285.

The only significant changes in atree 2.0 and 2.7 from that paper are that the heuristic responsibility is 
now a combination of true responsibility, error responsibility, and responsibility of both children of LEFT 
and RIGHT nodes.    The details are all in the "adapt" routine in atree.c shown in part below.

private void
adapt(tree,vec,desired)

atree* tree;
bit_vec* vec;
BOOL desired;

{
        register int lres;
        register int rres;
        register int funct;

/*
 * INCR and DECR implement bounded counters.
 */
#define INCR(t) ((t) += ((t) < MAXSET))
#define DECR(t) ((t) -= ((t) > MINSET))

        funct = tree -> c_tag;

The c_tag is 0 for an AND node and 1 for an OR node.    LEFT and RIGHT nodes have tags 2 and 3.    
Which is which doesn't matter here.

The node we are adapting is the root of a recursively defined "tree" datatype.    First the node has to have 
its inputs evaluated if that hasn't already been done.    (Of course, we don't adapt leaves.)

        if (funct != LEAF)
        {
                /* If the left child is unevaluated, evaluate it */

                if ((lres = tree -> n_sig_left) == UNEVALUATED)
                {
                        lres = atree_eval(tree -> n_child[LEFT_CHILD], vec);
                        tree -> n_sig_left = lres;
                }

Now n_sig_left stores the result of evaluation on the left.

                /* If the right child is unevaluated, evaluate it */

...    Same thing on the other side.

                /* Update the counters if needed */

There are two counters, one associated with the (left,right) = (0,1) input pair and one with the (1,0) input 
pair.    The appropriate counter is counted up or down depending on the desired network output.    (Yes, 
the desired *network* output -- because all nodes are monotonic increasing functions.    There is thus a 
positive correlation between the net output and any element's output.)

                if (lres != rres)



If there is a (0,0) or (1,1) input pair to the node, no adaptation occurs, according to the above condition.

                {
                        if (lres)
                        {
                                (void) (desired ? INCR(tree -> n_cnt_left)
                                                                : DECR(tree -> n_cnt_left));
                        }
                        else
                        {
                                (void) (desired ? INCR(tree -> n_cnt_right)
                                                                : DECR(tree -> n_cnt_right));
                        }

                        /* has the node function changed? */

The values of the two counters determine the function of the node; e.g. if they are both above (below) 
their midpoints, it is an OR (AND) node.    If they are on different sides of the midpoints, the node is a 
LEFT or RIGHT.

                        tree -> c_tag = node_function(tree);
                        funct = tree -> c_tag;
                }

                /* Assign responsibility to the left child */

It's symmetric to the responsibility of the right child discussed below, so we don't need to discuss it.

                /* Assign responsibility to the right child */

                if (lres != desired || funct != (lres ? OR : AND))
                {
                        adapt(tree -> n_child[RIGHT_CHILD], vec, desired);
                }

This finishes the algorithm, except for the one line that must be understood to grasp the entire atree 
credit-assignment algorithm, and that is the condition in the last if-statement:

lres != desired || funct != (lres ? OR : AND)

The current node is heuristically responsible when we get to this if statement, and the question is which 
children should be heuristically responsible?

If the left input is not equal to the desired network output (For a heuristically responsible node lres != desired 
is called an "error" on the left), the right child is made responsible.    The rationale for this is that right child
is made responsible if there is an error on the left, since maybe the left child can't correct the error 
(maybe it's a leaf).

If the node function is not OR or AND (i.e. it is LEFT or RIGHT with funct == 2 or 3, which are never 
values of the expression (lres ? OR : AND)), then the right child is made heuristically responsible.    This says:
try to put the subtrees that are cut off by a LEFT or RIGHT to some useful work. If such a cut-off subtree 
gets good enough, the node function might change to AND or OR to give that subtree an effective role in 
the net.

Finally, if the left input is 0 for an OR node or 1 for an AND node (i.e. if the right signal rres is enabled to 
pass through), then the right child is heuristically responsible.

This last part of the credit assignment by heuristic responsibility, if implemented by itself, is true 
responsibility for the AND and OR nodes: a node is truly responsible if a change in its output would 
change the network's output.    This component of heuristic responsibility is just hill-climbing or gradient 



descent.    The two earlier components of heuristic responsibility go beyond hill climbing to give the 
learning algorithm much more power than hill climbing alone.

Note that the left input controls the right child's responsibility, and vice-versa.    This implies that every 
node in the tree can interact with every other node at every pattern presentation.

There is one other trick: if the network output is still wrong after the first adaptation, adapt again.    This 
compensates for a shortage of errors to correct as the end of adaptation approaches.

(The code above was coded by Rolf Manderscheid, to whom should go the glory or blame for putting a 
set of nested conditions into one line.)



Building Hardware From the Trained System

Training an ALN results in a combinational logic circuit.    After adaptation, one eliminates LEFT and 
RIGHT functions, which are now redundant and groups the connected subtrees of two-input ANDs 
together to get ANDs of fanin >= 2.    Similarly for ORs.    The (alternating) layers of ANDs and ORs are 
logically equivalent to layers consisting entirely of NANDs.    (Use De Morgan's Law.)

The result is directly translatable into easily built hardware -- essentially a tree of transistors.    This is far, 
far simpler than any other neural system.    There are no built in delays, flip-flops, arithmetic units or table 
look-ups to slow the system down.



Hardware Speed

The execution time of such a circuit depends on the depth, not the size.    If we were using a twenty layer 
tree of transistors in submicron CMOS, the entire function would be executed in a few nanoseconds.

In the usual terms of numbers of one-bit connections per second, we would get many trillions of 
connections per second from an ALN, thousands of times more than existing special hardware systems 
for implementing backprop.    The fastest we know of on the market for backprop only allows a few billions
of connections per second at peak rate.



Cost of Hardware

For small problems, even one of the off-the-shelf programmable chips that exist today can do the job, 
though at a slower rate than a custom chip.    Such fast, inexpensive hardware is being investigated at an 
accelerator facility for making a fast trigger to recognize elementary particles in under 1/2 microsecond.    
A few hundred dollars should cover the materials.

This is in sharp contrast to other kinds of neural networks where you need to have processors costing 
thousands of dollars just to get into the game seriously, and even then the result of all their expensive, 
learning will be a system that executes far more slowly than an ALN tree of transistors.    With ALNs, you 
are seriously in the game from day one with the atree simulators.



Speed of the atree Simulator

Even in the atree software simulator, evaluation is fast, thanks to the fact that boolean logic can be lazily 
evaluated.    Once one input to an AND gate is computed to be 0, we don't need the other input, so we 
can suppress a whole subtree of the computation.    Laziness can provide speedups by factors of 10 or 
100 for typical problems.    On the other hand, backprop systems do not enjoy such speedups.    Non-
logical MLPs compute *everything*.    It's like doing programming without any "if"-statements.    (It's no 
wonder the usual neural networks need massive parallelism -- they suffer from this serious omission.)



Training Speed

The adaptation algorithms are also designed to be fast: what corresponds to backprop, a credit 
assignment computation, is also combinational logic in hardware, so it will be possible to build systems 
which will adapt a tree at a rate of, say, 25 million patterns per second.

The difference in speed of training and execution of backprop systems on the one hand, and ALN 
systems on the other, results from the drastic simplification of the usual MLP paradigm to base it on 
boolean logic.    The difference is immense.    One shouldn't think of it as getting a racing car from a station
wagon (twice as fast, say), it is more like getting a rocket from a hot air balloon (thousands of times 
faster).    As the problems get larger, the advantages of the ALN system over the usual MLP just keep on 
growing.



Generalization and Noise Immunity

Good generalization without loss of speed is the strong point of ALNs.    Pattern classification problems 
generally require an output which is the same for all patterns in a class.    Members of a class are in some 
way similar.    Similarity could be based on all sorts of criteria, but generally it can be defined by saying 
two individuals have many features in common.    If a feature is represented by a boolean variable, then 
the above says, similarity can be measured by Hamming distance between boolean vectors.    In order to 
use ALNs, we generally have to code other representations of individuals into boolean vectors in such a 
way that similarity for pattern classification purposes is reflected in Hamming distance.

Binary trees with node functions AND, OR, LEFT, and RIGHT have been shown to have the property that 
the functions they realize tend to have the same output value when the inputs are perturbed.    This 
depends on averaging over all functions on the tree, weighted by the number of ways each can be 
produced by setting the two bits at each node which determine the node's function.    It is also necessary 
to average over all vectors and all perturbations of a given number of bits.

The plausible reasoning behind this is that when an input signal to a gate changes, it may or may not 
change the output.    A change to an input to an AND will not change its output if the other input to the 
AND is 0.    Over all, the probability of a change is 0.5, if one input changes.    So for a 10-layer tree, the 
probability of a single bit change at a leaf causing a change of the tree output is 1/1024.

ALNs match the solution to the problem to provide fast pattern recognition.    Simple properties of boolean 
logic provide speed, immunity to noise, and offer the possibility of lazy evaluation.



The Future

In the Fall of 1992, we expect to have a much enhanced version, embodying some recent developments, 
that have resulted in part thanks to interaction with people on Internet via email and news.    It will have

- superior adaptive algorithms for both continuous and boolean data

- an ability to deal with continuous values, without significant loss in speed, that will make other MLPs 
obsolete, including those using    variants of backprop

- a sound statistical basis for fitting continuous functions

- a design methodology that will be easy to understand and will result in provably *safe* systems; there 
will be no more problem of wild values being produced by a "black box", so ALNs can be applied in 
safety-critical areas

- an interface to common database management systems on micros and mainframes

- an interface to a popular spreadsheet program under Windows.

- facilities to encourage developers to apply ALNs to pattern recognition problems: OCR, voice, control of 
virtual realities etc.

- a price, since we can't carry on otherwise.



An Invitation

We hope the above arguments will be enough to convince the reader to try the atree release 2.0 software 
for UNIX and/or the new release 2.7 for Windows on the IBM PC and compatibles.    At the very least, you 
should take a look at the OCR demo in release 2.7 to see the great noise immunity which results from 
such simple means.

The lf language should make it easy to get started, and there are lots of examples in release 2.7. (You 
could look at them even if you only want the UNIX version.)

If you like what you see, work with us.    Lots of researchers are doing so, some via the net: physicists, 
engineers, neuroscientists, speech pathologists, ...

Join the alnl mailing list (email to alnl-request@cs.ualberta.ca providing a correct address that will last for 
a while please).

The interest in backprop-type neural networks which has blossomed in the last few years is obviously 
fading fast and funding is less than expected.    We heard that it is because "neural networks" were just 
slightly better than standard techniques.    The problems that need high speed pattern recognition are still 
there, though, and when speed is an issue, ALNs are not just slightly better, but thousands of times better
than anything else.

As for the quality of ALN classifiers, you'll just have to try them out in your area of application. For beef 
grading, at last report, ALNs were the best technique they had.    A particle physicist, as far as we know, is
still trying to explain what information an ALN was using that managed to learn even when he deprived it 
of momentum information that was thought to be essential.    In prosthetics, the ALN didn't make a 
mistake a physiotherapist did, even though the mistake was in the training set.    A lot of people are pretty 
happy about their results with ALNs.

Good luck with your results using them!



Writing Applications with atree 2.7

Writing applications that perform a simple classification (yes or no) is relatively easy (within the 
constraints of Windows programming). The programmer creates a training set, then creates a tree using 
atree_create(). The tree is trained using atree_train() and then it can be used to evaluate new inputs 
using atree_eval().    Examples of this can be seen in the file easymosq.c, which hides most of Windows' 
dressings for clarity by using the Borland C++ 3.x EasyWin library.    A C++ application can be found in the
OCR demo directory, and more traditional Windows C applications can be found in the mosquito, 
multiplexor, and lf directories.

Writing applications where the tree has to learn real number valued functions is a little more complex, as 
the programmer has to come to grips with the encoding problem.    Because a single tree produces only 
one bit, the programmer must train several trees on the input data, each one responsible for one bit of the
output data. This is made slightly simpler by the choice of parameters for atree_train() which takes an 
array of bit vectors as the training set, and an array of bit vectors for the result set. The programmer 
provides an integer which states which bit column of the result set the current tree is being trained on. 
Typical code might look as follows:
....
{
        int i;
        int j;
        LPBIT_VEC train;        /* LPBIT_VEC is a long (far) pointer to a bit_vec */
        LPBIT_VEC result;
        LPATREE *forest;        /* LPATREE is a long (far) pointer to an atree */

        /* Create the training set using your own domain function */
        train = domain();

        /* Create the result set */
        result = codomain();

        /*
          * Make enough room for the set of trees - one tree per bit in the
          * codomain
          */
        forest = (LPATREE *) Malloc((unsigned)sizeof(LPATREE) * NO_OF_TREES);

        /* Now create and train each tree in turn */
        for (i = 0; i < NO_OF_TREES; i++)
        {
                forest[i] = atree_create(variables,width);
                atree_train(forest[i], train,    result, i, TRAIN_SET_SIZE,
                                        MIN_CORRECT, MAX_EPOCHS, VERBOSITY);
        }

        /*
          * Where TRAIN_SET_SIZE is the number of elements in train,
          * MIN_CORRECT is the minimum number of elements the tree should
          * get correct before stopping, MAX_EPOCHS is the absolute maximum
          * length of training and VERBOSITY controls the amount of
          * diagnostic information produced.
          */
......
The standard encoding of integers into binary numbers does not work well with this algorithm since it 
tends to produce functions which are sensitive to the values of the least significant bit. So instead we use 
the routine atree_rand_walk() to produce an array of bit vectors where each vector is picked at random 
and is a specified Hamming distance away from the previous element. Picking the width of the encoding 
vector, and the size of the step in Hamming space is currently a matter of experimentation, although some
theory is currently under development to guide this choice.    In future commercial versions of the software
under development, there is no need for encoding input into random walks.    It is, however, necessary for 
atree 2.7.

Real numbers are encoded by dividing the real number line into a number of quantization levels, and 



placing each real number to be encoded into a particular quantization level.    Obviously, the more 
quantization levels there are, the more accurate the encoding will be.    Essentially this procedure turns 
real numbers into integers for the purposes of training. The quantizations are then turned into bit vectors 
using the random walk technique.

Once the trees are trained, we can evaluate them with new inputs. Despite their training, the trees may 
not be totally accurate, and we need some way of dealing with error. The normal approach taken is to 
produce a result from the set of trees, then search through the random walk for the closest bit vector. This
is taken as the true result. Typical code might be as follows:
....
        /* Continued from previous example */
        int closest_elem;
        int smallest_diff;
        int s;
        LPBIT_VEC test;
        LPBIT_VEC tree_result;

        /* Now create the (single in this example) test vector */

        test = test_element();

        /* Now create some room for the tree results */

        tree_result = bv_create(NO_OF_TREES);

        /* Evaluate the trees */

        for (i = 0; i < NO_OF_TREES; i++)
        {
                /*
                  * Set bit i of tree_result, the result of evaluating
                  * the ith tree.
                  */

                bv_set(i, tree_result, atree_eval(forest[i], test));
        }

        /*
          * tree_result probably has a few bits wrong, so we will look
          * for the closest element in the result array
          */

        closest_elem = 0;
        smallest_diff = MAX_INT;

        for (i = 0; i < TRAIN_SET_SIZE; i++)
        {
                if ((s = bv_diff(tree_result, result[i])) < smallest_diff)
                {
                        smallest_diff = s;
                        closest_elem = i;
                }
        }

        /*
          * At this point, result[closest_elem] is the correct bit vector,
          * and smallest_diff is the amount of error produced by the tree.
          */

      do_something_with(result[closest_elem]);

        /* Etc. */
}
....

To see how to incorporate majority voting into your programs, which can increase the accuracy of your 
results, consukt the example program file mult.c. 





Data Structures

The following constitutes the data structures available for use in the atree and BV libraries.    Please the 
files atree.h and bv.h for further details.

LPATREE    :    a long pointer to an atree.    Declare your ALN variables to be this type.    You can get 
pointers to created trees by using atree_create(), atree_load(), and atree_read().

bit_vec    :    a structure containing an LPSTR field bv, which points to the chunk of memory containing the 
bit vector, and an integer field len, which contains the length in bits of the bit vector.    

LPBIT_VEC    :    a long pointer to a bit_vec.    You should declare most of your bit vector variables to be 
this type.    There are a number of bit vector functions which return pointers to bit vectors.    See the BV 
Library for more details.

code_t    :    a structure containing several fields for building encoded representations of input data.

LPCODE_T    :    a long pointer to a code_t.    Use the function atree_set_code() to fill in an LPCODE_T 
variable.

LPFAST_TREE    : a long pointer to a fast tree, which is a compressed representation of an atree.    Use 
the function atree_compress() to generate a fast tree.    A fast tree is executed much like a decision tree.



The Windows atree Library

This section is intended for advanced programmers.    Users can skip it!

The atree library consists of a the include files atree.h and bv.h, and the library of routines in atree.c and 
bv.c. Atree.h must be included in all software making calls on the library (it includes bv.h automatically); 
please remember to include \atree_27\include\ in your include path. The routines permit the creation, 
training, evaluation and testing of adaptive logic networks in a Windows environment, and there are a 
number of utility routines designed to make this task easier.

Important note:    the module definition file for your application must include in its EXPORT section the 
name of the atree Status window procedure: StatusDlgProc, along with any other window procedures 
your application may have - see mosquito.def for an example.    Also, your application must include 
atree.rc in its resource file in order to see the Status window.

The following functions are available to the programmer that relate to ALN management:

void atree_init(hInstance, hWindow)
void atree_quit()
LPBIT_VEC atree_rand_walk(num,width,p)
LPATREE atree_create(numvars,leaves)
void atree_free(tree)
BOOL atree_eval(tree,vec)
BOOL atree_train(tree,tset,...)
void atree_print(tree,stream,verbosity)
int atree_store(tree, filename)
LPATREE atree_load(filename)
LPATREE atree_read(stream)
int atree_write(stream, tree)
LPATREE atree_fold(tree)
LPFAST_TREE atree_compress(tree)
int atree_fast_eval(ftree, vec)
void atree_fast_print(ftree, stream)
int atree_set_code(code, high, low, ...)
int atree_encode (x, code)
int atree_decode(vec, code)
LPCODE_T atree_read_code(stream, code)
int atree_write_code(stream, code)



The BV Library
The following functions provide methods to manipulate and create a bit vector structure. Bit vectors are 
used in many of the functions in the atree library.

LPBIT_VEC bv_create(length)
LPBIT_VEC bv_pack(unpacked,length)
int bv_diff(v1,v2)
LPBIT_VEC bv_concat(n,vectors)
void bv_print(stream, vector)
void bv_set(n,vec,bit)
BOOL bv_extract(n,vec)
BOOL bv_equal(v1,v2)
LPBIT_VEC bv_copy(vec)
void bv_free(vector)



The Windows Support Library

This library includes functions to allow Microsoft Windows specific support during various atree routines 
and functions. The Windows Support Library contains the following function:

void Windows_Interrupt(cElapsed)



void atree_init(hInstance, hWindow)

HANDLE hInstance;
HWND hWindow;

This routine should be called by the user before making calls to any other atree library routine.    The 
parameter hInstance should be the instance handle given to your application by Windows in your 
WinMain() procedure.    the parameter hWindow should be the handle to the window that will be the 
parent of the atree Status Dialog box, which pops up during training.    If you don't know the window 
handle, or don't care, set hWindow = NULL.    Currently, atree_init() calls the srand() routine to initialize 
the random number generator and initializes the atree Status window.

If using the EasyWin library with Borland C++ (to generate C style programs without the Windows "stuff"), 
you can get the application instance handle with:

                        extern unsigned _hInstance;



void atree_quit()

This routine sets the internal atree_quit_flag variable to TRUE to notify all atree procedures that it is time 
to drop whatever it is they are doing and quit.    This procedure should be called before your application 
exits so that any running atree procedures are not left in memory.



LPBIT_VEC atree_rand_walk(num,width,p)

int num;
int width;
int p;

The standard encoding of integers into binary is not suitable for adaptive logic networks, since the least 
significant bits vary quickly during increments of the integer compared to the more significant bits.    The 
effect of binary number encoding is easy to see when we consider the result of a single bit error occurring
in the output of a collection of trees (a forest): how important the error is depends on the position of the bit
in the output vector. An error in the least significant bit of the vector makes a difference of one unit in the 
output integer; an error in the most significant bit causes a large difference in the output integer 
depending on the width of the vector.

A better encoding is one where each bit varies at about the same rate; and we can create such an 
encoding by taking a random walk through Hamming space [Smit].    A randomly produced vector is 
chosen to represent the first integer value in a sequence.    For each subsequent integer, a specified 
number of bits, picked a random, are changed to create the next vector.

The routine atree_rand_walk() does this job, with the additional guarantee that each vector produced is 
unique. The parameter num gives the number of vectors, or "steps" in the walk, required, the parameter 
width gives the width in bits of each vector, and the parameter p is the distance of each step in the 
Hamming metric (the number of bits which change).

The uniqueness requirement makes the routine rather more complex than one might expect. Because we 
expect to be using large random walks, it was felt that a simple check against all the previously created 
vectors would not be efficient enough. Instead all vectors with the same weight (the weight of a bit vector 
is the number of 1s in it; e. g., the weight of 10110 is 3) are chained together, and only those vectors with 
a weight equal to the one currently being checked for uniqueness are examined.    If the vector is not 
unique, the routine will go back to the previous unique vector and try randomly changing some other bits. 
In order to avoid an infinite loop, it will only try MAX_RETRY times to do this. If it cannot proceed, the 
routine aborts.    A better version of the software would check to assure a minimum distance between 
points.

A bit of thought must go into the choice of width, the length of the bit string used to encode a quantity, and
to the stepsize p.    Suppose we want num quantization levels for a variable x.    Then the width used to 
code x must be at least as large as the logarithm base 2 of num to make the codes unique. A 
thermometer code would use num - 1 bits, where the quantization level i starting at 0 and increasing to 
num - 1) is represented by i 1s at the left of the vector completed by 0s at the right.    For example, if num 
= 100, then width must be at least 7, while the thermometer code would use 99 bits.    The width for an 
input variable is not as critical as for an output variable, since we need to train one tree for each bit in the 
output.

Suppose some training data contains vectors with two variables in the domain. Two domain vectors (x1, 
x2) could be (3.14, 9.33), corresponding to levels (11, 17), and (3.18, 9.48), corresponding to (13, 18), 
say.    The function y=f(x1,x2) to be learned is supposed continuous, so the two function values could be 
34.6 and 33.9, with neighboring quantization levels 67 and 66 respectively.    If the training set has been 
learned perfectly, then we shall get the correct boolean codes for levels 67 and 66 from the trained forest 
of trees on input of these vectors.    When we only have vectors close to the above two vectors in 
Euclidean distance, then problems arise.

Suppose we have an input (3.15, 9.34), corresponding also to levels (11, 17). Obviously, the trees give 
the same response as for (3.14, .933), namely level 67 of y.    As long as this is an acceptable 
approximation to the desired function, there is no problem.    If the quantized function value varied too 
much within the set of real vectors corresponding to (11,17), we would have to use a finer quantization on 



the inputs.

Next suppose that the training set contained no sample with quantization levels (12, 17).    Then we would
like the system to be able to take advantage of the similarity between the concatenated codes for (12, 17)
and (11, 17) to be able to extrapolate its output.    This can occur if the codes for levels 11 and 12 of x1 are
close in Hamming distance.    If, on the other hand, they were 1/2 of the width of the code for x1 apart, 
then the system could just as well extrapolate from a training point with levels (96, 17) as from (11, 71).    
So we would take p for the random walk for x1 to be less than, say, 1/4 width to make sure levels 11 and 
12 of x1 are close.    This is because random pairs of points in the Hamming space tend to be 1/2 width 
apart.

If neighboring training samples tended to have x1 values which are four levels apart, e. g. (11, 17) and 
(15, 17), then 4 * p would have to be less than 1/4 width.    Now if we vary both x1 and x2, then 
neighboring input vectors might tend to be four levels apart in x1 and 7 levels apart in x2. Then the values
px1, px2 chosen for p for the two walks should be such that 4 * px1 + 7 * px2 is less than 1/4 the sum of 
the widths wx1, wx2 for coding x1, x2. 

There is a good reason for using a large value of p for the output variable y.    Namely, for a given input 
vector, some of the width trees may produce an output bit that is different from that of a code of the 
correct quantization level of y as one varies the input a bit.    If fewer than p/2 output bits are changed, we 
are still close to the original code, and the same output quantization level would still be recovered by 
minimum distance decoding.    Consider the case where there are only num = 2 levels of y, and they are 
encoded 00000 and 11111, with width = 5 and p = 5.    As we move away from inputs resulting in a correct 
response, say 00000, to those having two bits different, like 01001, the decoded output will maintain its 
value.

So for the output variables, choosing larger values for p and width can provide error correction just as 
taking a majority vote does for a boolean output.

We are aware that this only touches the surface of the questions involved with choosing the Hamming 
codes for continuous variables.    The general assumptions are that real intervals are mapped into random
walks in a way that locally preserves "proximity", and it is the proximity of elements in the domain and 
codomain that determines the quality of extrapolation. Instead of using random walks, some work has 
been done using algebraic codes, in particular Golay codes.    

The idea of encoding the input and output will no longer be necessary with new software currently under 
development.    The trouble with encoding is that a bit changes back and forth between 0 and 1 during the 
walk, which destroys any monotonicity we might want to have in the learned function,    Monotonicity of 
pieces of the functions to be learned will be a powerful tool in making ALNs acceptable in safety-critical 
applications.



LPATREE atree_create(numvars,leaves)

int numvars;
int leaves;

This is the routine used to create an atree of a given size. The parameter leaves gives the number of 
leaves or input leads to the tree, and hence controls its size, which is one less than this.    A balanced tree 
is chosen if possible.

The parameter numvars is the number of boolean variables in the bit vector input to the tree.    It is used 
during initialization of the (random) connections between leaf nodes of the tree and the input bit vector.    
Usually the bits of the input vector, and their complements will be required as inputs to the tree since 
there are no NOT nodes in the tree itself. It is therefore recommended that there be at least twice as 
many inputs to the tree as there are bits in the input vector for a given problem:

                                                leaves >= 2 * numvars

The atree library maintains two free lists, one each for leaves and nodes. atree_create() always uses 
memory from these lists.    In the event that a free list is empty, a large block is allocated and added to the 
list.    The size of the block can be adjusted by editing the compile-time constant NEWMALLOC defined in
atree.c.



void atree_free(tree)

LPATREE tree;

This routine returns memory used by nodes and leaves    of tree to the appropriate free list.    Note that 
memory is not freed from the free lists.



BOOL atree_eval(tree,vec)

LPATREE tree;
LPBIT_VEC vec;

This routine is responsible for calculating the output of a tree from a given bit vector. It takes advantage of
the standard C definition of && and || to do this in the required parsimonious fashion, which uses lazy 
evaluation: if the first input to an AND (OR) is 0 (1), don't bother computing the other input [Meis][Arms5].

This routine also marks subtrees that are unevaluated, and sets the internal atree.n_sig_left and 
atree.n_sig_right values for a node. This information is used when atree_eval() is used from within 
atree_train().



BOOL atree_train(tree,tset,...)

LPATREE tree
LPBIT_VEC tset;
LPBIT_VEC correct_result;
int bit_col;
int tset_size;
int no_correct;
int epochs;
int verbosity;

This is the routine that adapts a tree to learn a particular function.    It is a little more complex than you 
might expect as it has been arranged to make it convenient to train multiple trees on the same training 
set.

The parameter tree is the tree to be trained, and the parameter tset is the array of bit vectors which the 
tree is to be trained on (the training set). An atree only produces a single bit, so in principle all that is 
needed for the correct_result parameter is an array of bits, with one bit corresponding to each bit vector in
the training set. In training multiple trees (when learning a quantized real-valued function, for example), it 
is more convenient to keep the correct results in an array of bit vectors, and specify which column of the 
array a tree is supposed to be learning. This is the purpose of the array correct_result and the integer 
bit_col.

The next parameter tset_size gives the number of elements in tset and correct_result (which have to be 
the same --- there must be a result for every input to the function).

The next two parameters control the amount of training that is to be done. We train on the vectors of the 
training set in pseudo-random order.    The term epoch here is used to mean a number of input vector 
presentations equal to the size of the training set.    The parameter epochs states how many epochs may 
be completed before training halts.    The parameter no_correct states how many elements in the training 
set the tree must get correct before training halts.    The routine will therefore stop at whichever of these 
two conditions is true first. For example given that we have a training set with 10 elements and we wish to
train for 15 epochs or until 90% of the elements in the training set have been responded to correctly. We 
can achieve this by setting no_correct to 9 and epochs to 15.

The verbosity parameter controls how much diagnostic information the routine will produce. At the 
moment only 0 (silent) or 1 (progress information) is implemented.    The progress information consists of 
an atree Status window that shows the progress of training.

The routine decides which vector is the next to be presented to the tree and extracts the result bit from 
the correct_result array. It also keeps track of the number of epochs, and the number of correct responses
from the tree.



void atree_print(tree,stream,verbosity)

LPATREE tree;
FILE *stream;
int verbosity;

This routine allows the programmer to output an atree to disk before, during, or after training, in a form 
suitable for printing. The parameter tree is the tree to be printed, and verbosity is the amount of 
information produced.



int atree_store(tree, filename)

LPATREE tree;
LPSTR filename; (LPSTR is Windows for "char far *")

This routine stores tree to filename. This routine is used to store a single tree, if you want to store a forest 
use atree_write().    Returns 0 for success, non-zero on failure.



LPATREE atree_load(filename)

LPSTR filename;

This routine reads filename and returns the tree stored therein. atree_load() reads exactly one tree from 
filename, if you want to read multiple trees use atree_read().    A NULL pointer is returned if any error or 
EOF is encountered.



LPATREE atree_read(stream)

FILE *stream;

This routine reads a single tree from the file referenced by stream and returns a pointer to it.    
Subsequent calls to atree_read() will read further trees from stream.    A NULL pointer is returned if any 
error or EOF is encountered.



int atree_write(stream, tree)

FILE *stream;
LPATREE tree;

This routine writes tree onto the file referenced by stream.    Trees are stored in postfix notation, with the 
characters `&', `--', `L', `R' representing the node functions AND, OR, LEFT, RIGHT respectively.    Leaves
are stored as a number, representing the bit index, optionally preceded by a `!' for negation.    The end of 
the tree is marked by a semicolon.    Returns 0 for success, 1 on failure.



LPATREE atree_fold(tree)

LPATREE tree;

This routine removes all LEFT and RIGHT nodes from tree and returns the result.    This does not change 
the function represented by the tree, but the resulting tree may be considerably smaller and hence faster 
to execute. Nodes and leaves that are discarded are added to the free lists.

Trees can be folded, stored, and reloaded.    However, once nodes are eliminated, further training will not 
recover them.    Future software will allow "tree growth".



LPFAST_TREE atree_compress(tree)

LPATREE tree;

This routine returns the fast_tree derived from tree.    A fast_tree is essentially a list of leaves, at each of 
which a binary decision based on the leaf input is made.    Each leaf includes two pointers to subsequent 
leaves to evaluate, one for each possible result of evaluating the current leaf.    It is the function of 
atree_compress() to calculate these two "next" pointers for each leaf.    Experiments show that 
evaluating a fast_tree is almost twice as fast as evaluating the corresponding folded atree.    This is due to
the fact that recursion is eliminated.    Fast_trees    are also slightly more compact than the equivalent 
atree. Note that there is no "decompression" routine, and there are no fast_tree    I/O routines.

A fast tree is like a decision tree, but the fast tree may reuse the same tree input bit if it sent to several 
leaves.    (A faster procedure without repetitions could be written, but we think that would use a lot of 
storage.)



int atree_fast_eval(ftree, vec)

LPFAST_TREE ftree;
LPBIT_VEC vec;

This routine is the equivalent of atree_eval(), but for fast_trees.



void atree_fast_print(ftree, stream)

LPFAST_TREE ftree;
FILE *stream

This routine writes a representation of ftree to the file pointed to by stream. Each line of output 
corresponds to a leaf and includes the leaf index, bit numbers (possible preceded by a `!' to indicate 
negation), and the two "next" pointers (shown as indices).    NULL pointers are represented by -1.



int atree_set_code(code, high, low, ...)

LPCODE_T code;
double low;
double high,
int vector_count;
int width;
int dist;

This is the constructor function for the type code_t. If width is greater than one, atree_set_code() calls 
atree_rand_walk() to get a random walk containing vector_count vectors, with adjacent vectors having a 
Hamming distance of dist between them.    This random walk will represent numbers in the closed interval 
[low, high].    The functions atree_encode() and atree_decode() translate floating point quantities and bit 
vectors, respectively, into an index into the random walk.    atree_set_code() also calculates the (real) 
distance between adjacent vectors and stores this in the step field of code.

If width is equal to one, the code represents a boolean variable, and no random walk is produced.    In this
case low , high , and vector_count are taken to be 0, 1, and 2 respectively.    The vector field will be set to 
point to bit vectors of length one having the appropriate values.    The coding for a boolean variable is thus
1:1 and quantization is 2.



int atree_encode (x, code)

double x;
LPCODE_T code;

This routine returns the quantization level of x as represented by code.    To obtain the corresponding bit 
vector, use the expression:

                        my_bit_vec = code -> vector + atree_encode(x, code)

If the code is boolean (code -> width == 1), then atree_encode() returns 0 if x is 0, otherwise it returns 1.  
For non-boolean codes, atree_encode() issues a warning if x    is out of range, and the output is clipped 
so that it lies within the range 0 .. code -> vector    - 1.



int atree_decode(vec, code)

LPBIT_VEC vec;
LPCODE_T code;

This routine returns the quantization level of vec as represented by code. To obtain the corresponding 
floating point value, use the expression:

                my_value = code -> low + (code -> step * atree_decode(vec, code)

The quantization level corresponds to the first bit vector stored in the random walk having the smallest 
Hamming distance from vec.    If the code is boolean, the quantization level is simply the value of vec 
(whose length must be 1).

A faster decoding procedure might use algebraic codes.    Also, ALN forests are natural decoders.    Such 
a forest computing an index to a list of possibilities is a powerful, general tool for many applications.



LPCODE_T atree_read_code(stream, code)

FILE *stream;
LPCODE_T code;

This routine reads a coding from stream and fills the entries of the code structure.    A NULL pointer is 
returned if any error or EOF is encountered.



int atree_write_code(stream, code)

FILE *stream;
LPCODE_T code;

This routine writes the contents of code onto stream.    If the code is boolean, the vector field is not 
written.    Returns 0 for success, 1 for failure.



LPBIT_VEC bv_create(length)

int length;

Creates a vector of length bits, where each bit is initialized to 0, and returns a long pointer to the bit 
vector.



LPBIT_VEC bv_pack(unpacked,length)

LPSTR unpacked;      
int length;

This routine has been provided to make it easy for the programmer to produce bit vectors. The routine is 
handed an array of characters containing the value 0 or 1 (unpacked) and an integer length giving the 
number of bits. The routine returns a long pointer to a bit_vec.



int bv_diff(v1,v2)

LPBIT_VEC v1;
LPBIT_VEC v2;

This routine calculates the Hamming distance between v1 and v2, i.e.

                                                weight (v1 XOR v2)

where weight is the number of 1 bits in a vector and XOR is the bitwise exclusive-or operation. This 
routine is used to find the closest vector in a random walk array to some arbitrary vector. Just search 
through the random walk for the vector with the smallest difference from the vector of tree output bits. 
(Inefficient, but easier to understand than decoding an algebraic code!).



LPBIT_VEC bv_concat(n,vectors)

int n;
LPBIT_VEC far *vectors;

This routine is used by the programmer to join several bit vectors end-to-end to give the string 
concatenation of the vectors. This routine is most frequently used during the construction of training sets 
when elements of several random walks have to be joined together to obtain an input vector to a tree.

The parameter vectors is an array of LPBIT_VEC pointers, and the parameter n states how many of them
there are. Vector pointers are used to make this routine a little faster since there is less copying involved.  
A long pointer to the concatenated bit_vec is returned.



void bv_print(stream, vector)

FILE *stream;
LPBIT_VEC vector;

This is a diagnostic routine used to print out a bit_vec.



void bv_set(n,vec,bit)

int n;
LPBIT_VEC vec;
BOOL bit;

This routine allows the programmer to explicitly set (or reset) the nth bit (0 to bit_vec.len - 1) bit in the 
vector vec to have the value in the parameter bit.



BOOL bv_extract(n,vec)

int n;
LPBIT_VEC vec;

This routine returns the value of the nth bit (0 to bit_vec.len - 1) in the bit vector vec.



BOOL bv_equal(v1,v2)

LPBIT_VEC v1;
LPBIT_VEC v2;

This routine tests two bit vectors for equality.



LPBIT_VEC bv_copy(vec)

LPBIT_VEC vec;

This routine returns a copy of vec.



void bv_free(vector)

LPBIT_VEC vector;

This routine frees the memory used by a bit_vec. Accessing a bit_vec after it has been freed is usually 
disastrous.



void Windows_Interrupt(cElapsed)

DWORD cElapsed;          (DWORD is Windows for "unsigned long")

When called, this procedure allows Windows to multitask an atree application with other Windows 
applications. This is accomplished with a PeekMessage() call (see the Windows Programmer's 
Reference for more details). The programmer may want to use this procedure during long tree evaluation 
and training set generation loops, or during other processing where control may not be passed back to 
the application's window procedure for lengthy periods of time (the price you pay for non-preemptive 
multitasking!).    Since PeekMessage() calls can be quite time consuming, this procedure will only call 
PeekMessage() after cElapsed milliseconds have passed since the last call to PeekMessage().    
Experimentation has shown a value for cElapsed of about 500 to work fairly well.



ALN is short for Adaptive Logic Network.    ALNs are a type of artificial neural system (ANS), but are 
unique in that they employ a logic gate architecture that makes them extremely fast.



An AND gate takes two inputs, each of which may have the value 1 or 0.    If both inputs are 1, then the 
output of the AND gate is 1, otherwise it is 0.



A NAND gate takes two inputs, each of which may have the value 1 or 0.    If both inputs are 0, then the 
output of the NAND gate is 1, otherwise it is 1.



An OR gate takes two inputs, each of which may have the value 1 or 0.    If both inputs are 0, then the 
output of the OR gate is 0, otherwise it is 1.



An XOR gate takes two inputs, each of which may have the value 1 or 0.    If both inputs are the same, 
then the output of the XOR gate is 0, otherwise it is 1.



A LEFT gate takes two inputs, each of which may have the value 1 or 0.    If the left input is 1, then the 
output of the LEFT gate is 1, otherwise it is 0.



A RIGHT gate takes two inputs, each of which may have the value 1 or 0.    If the right input is 1, then the 
output of the RIGHT gate is 1, otherwise it is 0.



OCR stands for Optical Character Recognition.    Computers are able to scan in images of paper and 
store them in digital form, where they can attempt to recognize the characters that existed on the paper.
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